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ABSTRACT

The prescribed tasks in high speed robotic systems are severely
deteriorated because of their manipulator dynamic deflections. On the
other hand conventional dynamic modeling techniques fail to reveal
appopriate control forces in flexible systems. In this paper the
conventional dynamic equations of motion for systems subject to
kinematical constraints are modified by a new concept of control force
representation. The directions of the control forces are selected such
that they correspond to the joint degrees of freedom. Then the joint
control forces and torques that yield unperturbed prescribed motions are
solved simultaneously with the system motion. A flexible manipulator is
presented to illustrate the methods proposed.

1. INTRODUCTION

The operation of high speed robots is severely limited by their

manipulator dynamic deflection. The vibrations deteriorate the accuracies

of the prescribed tasks assigned to certain points and significantly

reduce the robot arm production rate. Hence determination of the

appropriate control forces and torques at the joints that yield stable

prescribed motions is an important control problem.

In this paper geometrical constraints represent geometrical
restrictions such as closed loops and physical guides. On the other hand

kinematical constraints represent prescribed desired paths or prescribed

motions of certain points or bodies. Such prescribed motions are to be

realized by control forces applied by the actuators in the system which

are usually placed at the joints.

In the conventional approach, constraints in the system are modeled

by constraint reaction forces whose directions are perpendicular to the

constraint surfaces. (See Yoo and Haug [I], Shabana [2], Kamman and Huston

[3], Hemami and Weimer [4], Nikravesh [5].) Using conventional methods,

when the prescribed motions are treated as constraint equations and
embedded into the governing equations of motion, the corresponding

generalized constraint reaction forces can be determined. However these

forces cannot be utilized as physically possible control forces due to the
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presence of componentsthat correspond to the elastic coordinates. For
this reason previous solution procedures involved feedback and adaptive
control algorithms which in turn increase the complexity of the problem
considerably.

In this paper the kinematical constraints are modeled by general
direction control forces. The modified equations of motion for flexible
multibody and robotic systems subject to geometrical and kinematical cons-
traints are developed. The directions of the control forces are selected
such that they correspond to the joint degrees of freedom. By this way
joint control forces and torques that achieve the unperturbed prescribed
motions are solved simultaneously with the corresponding system motion.
The modeling of flexible multibody systems in joint space based on finite
element method and componentmodesynthesis, as developed in references
Ider [6], Ider and Amirouche [7] is also outlined. In the equations of
motion all nonlinear interactions between the rigid body and elastic

coordinates are automatically incorporated.

This paper is divided into seven sections. The first section provided
an introduction. In the second section kinematics and constraint equations

in flexible multibody systems are outlined. The conventional equations of
motion for constrained systems are presented in the third section. In

section four the problems with the conventional approach are discussed. In
the fifth section the modified equations of motion with general direction

control forces are developed. Sixth section presents the simulations of a

flexible manipulator by the proposed method. Conclusions form the last
section.

2. FLEXIBLE NULTIBODY KINENATICS AND CONSTRAINT EQUATIONS

In a multibody system each joint connection can be described by a total of

six degrees of freedom. The constrained joint coordinates are eliminated

in the analysis, hence all possible joint types are allowed. The system

may contain closed loops and any selected points may have prescribed
motions. First the recursive dynamical equations are developed for a tree

configuration which is obtained by cutting the closed loops open (using

any arbitrary joint in the loop). Closed loops and prescribed motions are

then imposed as a set of constraint equations.
In Figure I, a typical deformable body Bk and its lower connecting

body Bj are shown. The joint between Bk and Bj is the lower joint of Bk
and is defined by points gk and Q_ and axis frames nk and nk" fixed at

these points. The elastic deformations are modeled by finite element

method with respect to a body reference axis frame denoted by NW. Nk, in

general, is not fixed to a point on the body. It follows the rigid body
motion of Bk in a manner consistent with the specified boundary

conditions [6,7].

The position of the system can be described by the relative joint
coordinates of each body and the modal coordinates of the flexible bodies.

Translation of nk with respect to nk* is denoted by vector zk. For the

relative rigid body rotation degrees of freedom, successive Euler angles
in transforming nk to nk* can be used. The modal coordinates q_, j=l,..,m k
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Figure I. A multibody system

of each body Bk represent the normal modes of deformation obtained by

component mode synthesis and m k is the number of the modes considered.

Let vector _k represent the angular velocity of nk with respect to

nk*. Then the generalized speeds of the system can be conveniently

selected as the relative angular velocity components, the relative

trarslational velocity components and the modal coordinate derivatives.

The vector of the system generalized speeds y can be defined as

y - [_T, _'T,I_T]T (I)

where

W3,..., W I , (2)

(3)

and

,r, , """ ' '...... ' qmN IT (4)

For the dynamical equations we need the velocity, in fixed frame R,

of an arbitrary point P in finite element i of body Bk. To this end, the

angular velocity of Nk in R, w k, is obtained by summing successive

relative angular velocites and can be compactly expressed as
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(5)

where v k and Mk are the partial angular velocity matrices composed of the
coeffficients of the generalized speeds _ and _, respectively.

It can be shown [6,7] that the velocity of point P in R could be
written as

vk_: aki _ + b" z + Cktq (6)

where akl , bk and ck_ are the partial velocity arrays associated with w,

and i, and are functions of displacements only.
Depending on each joint type, the constrained joint coordinates are

then eliminated in the generalized speed vectors _ and _ (equations (2),

(3)). When the corresponding columns of the partial velocity matrices are
eliminated, v k and ak_ are 3xnl matrices, and b k is a 3xn2 matrix, where

nl is the total number of the free joint rotation degrees of freedom and

nz is the total number of the free joint translation degrees of freedom.

The remaining arrays Mk and cki are 3xm (m=m1+...+mN).
Let the tree structure have n degrees of freedom (n=nl + n2 + m}, and

let the total number of closed loop and prescribed motion type of

constraints be c. Then the system's degrees of freedom reduce to n-c.

The constraint equations can be generated using the partial velocity

matrices. For example, if a point say A in Br has a prescribed motion, and

the prescribed velocity vector of that point is given by g(t) with respect

to R, then denoting the local undeformed vector from Or to A by st,the

resulting three constraint equations are

ar_ _ + br _ + cr4_ = g (7)

where arl and cri correspond to sr.

Similarly if the refence axis frame of Br has a prescribed

velocity h(t), we have

angular

vr _ +pr_ i = h (8)

For a closed loop type of constraint, let Br and B= connect with each

other to form a closed loop in 3-D. Differentiation of the position vector

equation expressing loop closure leads to the three velocity level

constraint equations,

(arl-a,i) _ + (br-b ") _ + (cri-c "i)(] = 0 (9)

The holonomlc and nonholonomic constraint equations can be compactly

written as
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B y = 9 (10)

where B is a cxn constraint matrix and g contains prescribed velocities.

3. CONSTRAINT REACTION FORCES AND EQUATIOllS OF NOTION

Kane's equations for the constrained system can be written as

F + F* + S + Fc = 0 (11)

where F, F*, S and Fc are respectively the vectors
external, inertia, stiffness and constraint forces.

The generalized inertia forces F* can be written in

form,

of generalized

the following

F* : M _ + Q (12)

where individual submatrices of M and Q can be expressed in terms of the

partial velocity matrices [7] as,

M = )-TV/kk i i

a k i T a k i

ak iT b k b kT b k

ak i T C k i bkTc k i

sym.

ck i'l'ck i

pdV (13)

and

akiT(a ki _t+ bk _' + Ckit] )

akiT(a ki _ + bk _ + cki_ )

akiT(akl _ + bk _ + ckil_ )

pdV (14)

The stiffness vector S is obtained from the structural

geometrical stiffness matrices of each body expressed in
coordinates.

The genera]ized constraint forces Fc can be expressed as

and
modal

Fc = BT X (15)

where X is the vector of undetermined multipliers. Since the rows of B are

the partial velocity vectors, X_, i=1,...,c represent the constraint

reaction forces generated at the application of the constraints. A row of

425



B can also be viewed as the direction of that constraint in

generalized space.
Substitution of equations (12) and (15) into eq. (11) leads to

the

M y+ S + Q+ BT X = F (16)

Our purpose is to find the accelerations for numerical integration.

To this end the constraint equations in the acceleration level are

B y = +- + y (17)

Equations (16) and (17) constitute n+c equations from which the
accelerations and the undetermined multipliers can be obtained.

The multipliers could be eliminated for computational efficiency. To

this end, let C denote a nx(n-c) matrix which is orthogonal complement to
B [8]. Premultiplying eq. (16) by CT, and combining the resulting equation

with eq. (17), we obtain the augmented equations for the constrained

system as below.

[CM]+[C+,+S0>++] (18)

4. PROBLE]_WITH THE CONVENTIONAL /g_CIB

In the conventional approach the constraints in the system are modeled by
constraint reaction forces which are perpendicular to constraint surfaces.

They represent the reactions of the environment. However kinematical cons-
traints represent desired motions and are meant to be realized by internal

control forces. Kinematical constraints are particularly important in

robotic systems where certain points are assigned specific tasks that
should be realized by joint actuators.

Let ci of the constraints in the system be geometric and the

remaining c2 (c2=c-ci) be kinematical. The matrix of the constraint force
directions B and the vector of constraint force magnitudes X can be

partitioned such that

B = [B eT BKT] T (lg)

and

X = [Xc r XKr] (20)

where the dimensions of B_, BK, XG and XK are clxn,

respectively.

Then eq. (16) can be written in the following form

c2xn, Cl and c2
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N y + Q + S + FG + F K - F (21)

where the generalized constraint forces FG and FK
respectively to geometrical and kinematical constraints are

corresponding

FG = BGT XG (22)

and

FK = BKT XK (23)

The constrained system as given by eq. (18) could be simulated to
determine the generalized constraint forces. In view of eq. (21), then
control forces numerically equal to FK would yield the same motion of the
system ensuring the realization of the desired motions.

However, in flexible systems FK contains components that correspond
to the elastic coordinates in addition to the components that correspond
to the joint coordinates. While the latter can be applied by the joint
actuators as control forces, the former cannot be produced by a physical
means as control forces. That FK has components in the direction of the
elastic coordinates is apparent from eqs. (7) and (8) where the
coefficients of the generalized speeds form the vectors of BK in eq. (23).
Hence, with the conventiona] approach it is not possible to design a set
of control forces that can achieve unperturbed prescribed motions in
flexible robotic and multibody systems.

5. COlIT]R_l_FORCES FOR KIN_TICJ_L CONSTRAINTS _O MMX)IFIED E-i_JATION OF
MOTION

Since kinematical constraints are to be realized by control forces in the
system, general direction control forces are introduced to the equations
of motion, so that

M y + Q + S + Be _k_T+ BKT _kK + AT_ = F (24)

where A is a c2xn matrix of control force directions and _ is a c2
dimensional vector of control force magnitudes. Let the control force
directions are selected such that the constraint reaction forces
corresponding to the kinematical constraints become zero. Then eq. (24)
can be written as follows, as shown in accompanying paper (Ider [9]).

M y + Q + S + ZTV = F (25)

where

ZT -- [B GT AT ] (26)
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and

v T = [_kGT M T] (127)

The directions A need to be selected from physical considerations and then

equations (25) and (17) can be solved together to compute the control

force magnitudes and the corresponding generalized accelerations. A should

be chosen such that rank of Z is c, so that c2 kinematical conditions
could be controlled.

Let _ be a cx(n-c) matrix orthogonaI complement to Z. Premultiplying

eq. (25) by _T and augmenting with eq. (17), we obtain reduced equations

(28)

The selected control force directions can realize the prescribed

motions if and only if the augmented mass matrix in eq. (28) is non

singular. Hence singularity of the augmented mass matrix represents a

condition to test the solution. In other words, the directions A should be

such that the vector space spanned by the rows of B and the vector space
spanned by the rows of OT are nonintersecting [9].

It has been observed that for flexible robotic systems if the control

forces are selected in the directions along the corresponding joint

degrees of freedom the augmented mass matrix becomes full rank and hence

it is possible to realize the kinematical constraints by actuators at the

joints. This will be illustrated by the simulations of a flexible

manipulator in the next section.

6. SINULkTIONS OF A FLEXIBLE MANIPULATOR

In the planar manipulator shown in Figure 2, link 2 is a flexible ]ink,

while link I is treated rigid. The data used for link I are L1=Im, m1=30kg

and II=I0 kg.m2. Link 2 is modeled by beam elements with deformation

displacement and rotation nodal coordinates [10], and L2:2.7m, a=1.Sm,

m2=15kg, E=68.g5xlO g N/m 2 and area A=O.O005 m2. The longitudinal
deformation is neglected due to the axial stiffness and the transverse
deflection is described by the first two modes since higher modes were
observed to be negligible. Therefore the generalized coordinates of the
system are el, Bz, and modal coordinates ql and q2. The generalized speed
vector

y = [el, 41, T.

Initially the system is at rest, and e1=80 ° and _2:-160 °. Point A on

link 2 is required to deploy from the given position 1.5m horizontally.

The prescribed motion of point A is given as
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Figure 2. Flexible manipulator

t T 2_t)
XA = 1.5 _-(t -_sin_ + 0.4862

yA = -0.7878
(29)

The constraint equations in the system can be expressed as

Llcl + L2ClZ - s12((_lrll + (_2q2) = XA

LIS1 + L2S12 + c12((_1rll + (_2qz) = yA
(30)

where 01 and {2 are the values that correspond to the location of point A

in the first and second eigenvectors respectively, c1=cosel,

clz=cos(el+e2), sl=sinel and slz=sin(91+92).

At the acceleration level the constraints are given by eq. (17) where B
and g are

B =ILl sl+L2sl z+cl 2 (01ql+Ozq2)

[ LIcl+L2cl 2-s12 ((_lql+02qz) Lz s12+c12 (01rI I +_)2q2 ) 01s12 ql2s, 2j
L2 c'l 2-sI z (01 q'l +(p2rlz ) (l.i ci 2 02C12

and

g = [XA , O] T. (31)
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First the system is simulated using the conventional method. Notice

that both constraints in the system are kinematical. Our objective is to

determine joint moments MI and M2 that would produce unperturbed desired

motion of point A. The generalized constraint forces in eq. (15} are

F_

F_

F_

.F_

kl{Llsl+L2s_2+clz(¢1ql+_2qz)]}+ Xz{Llcl+L2c12-s12((Dlrll+lD2r12)}

k1{L2s12+C12(¢lq1+_)2q2)} + k2{LzClz-S12(@1q1+l_zq2)}

k102s12 + Xz(Dzc12

(32)

The system is simu]ated for the deployment motion period T=Isec. The

generalized constraint forces obtained are plotted in Figure 3. Notice
that if one considers F_ and F_ as joint control moments, F_ and F_ will

be left unaccounted. They cannot be converted to any set of physically

applicable control forces or moments, and a simulation only with FI and F2
as control moments MI and M2 produces perturbations for point A.

200 "

Fe

ioo

-tO0

Figure 3. Generalized constraint forces using conventional
method: I. FI , 2. F2 , 3. F_ , F4
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Figure 4. Joint moments for unperturbed motion of A.
Flexible system: I. M1 , 2. Mz
Rigid system: 3. M1 , 4. M2

The system is then resimulated by the control force approach
presented in this paper. The contro| force directions are selected such
that they correspond to the joint coordinates 81 and ez. i.e.

A=[I000I
0 I 0 0

(33)

The control forces ZTV become

ZTI# : I#1

0
+V2

0

0

0

I

0

0

"Vl_

vz I

O_

.0

(34)

This means that the required joint moments for unperturbed motion of point
A are Ml:Vl and M2:v2.
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With the above control force directions, the augmented mass matrix
was observed to be full rank, i.e. singularity (or near singularity) did
not occur, conforming with physical expectations. The joint control
moments MI and Mz that produce unperturbed motion of point A are plotted
in Figure 4.

For comparison, the system is resimu]ated with both bodies considered
rigid, and the joint moments corresponding to the rigid system are also
shown in Figure 4. The difference in the control moments for the flexible
system accounts for the effects of the elastic deformations.

7. CONCLUSIONS

This paper presented a general procedure to determine the joint control
forces and torques in flexible robotic systems, that realize prescribed
motions in an unperturbed manner. The method is based on a new approach
for modeling kinematical constraints by general direction control forces.
The control forces have been selected along the directions of the joint
degrees of freedom in the generalized space, and the control force
magnitudes are solved simultaneously with the corresponding system motion.

It has been shown that with the conventional approach of

perpendicular constraint forces a solution to the problem cannot be
obtained.

In the analysis the flexible bodies have been modeled by finite
element method and all interactions between the rigid and elastic motion

have been included. By the procedures presented in this paper the body
flexibilities can be controlled by applying forces and torques at the

joints•
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